Inserisci un problema...
Matematica discreta Esempi
Passaggio 1
Passaggio 1.1
Sposta .
Passaggio 1.2
Riordina e .
Passaggio 2
Per trovare il possibile numero di radici positive, guarda i segni dei coefficienti e conta il numero di volte in cui i coefficienti cambiano da positivo a negativo o viceversa.
Passaggio 3
Poiché ci sono cambiamenti di segno dal termine di ordine più alto a quello di ordine più basso, ci sono al massimo radici positive (Regola di Cartesio). È possibile trovare gli altri numeri possibili di radici positive sottraendo le coppie di radici (ad es. ).
Radici positive: o
Passaggio 4
Per trovare il possibile numero di radici negative, sostituisci con e ripeti il confronto dei segni.
Passaggio 5
Passaggio 5.1
Applica la regola del prodotto a .
Passaggio 5.2
Eleva alla potenza di .
Passaggio 5.3
Moltiplica per .
Passaggio 5.4
Applica la regola del prodotto a .
Passaggio 5.5
Eleva alla potenza di .
Passaggio 5.6
Moltiplica per .
Passaggio 5.7
Applica la regola del prodotto a .
Passaggio 5.8
Eleva alla potenza di .
Passaggio 5.9
Moltiplica per .
Passaggio 5.10
Applica la regola del prodotto a .
Passaggio 5.11
Eleva alla potenza di .
Passaggio 5.12
Moltiplica per .
Passaggio 6
Poiché ci sono cambiamenti di segno dal termine di ordine più alto a quello di ordine più basso, ci sono al massimo radici negative (Regola di Cartesio). È possibile trovare gli altri numeri possibili di radici negative sottraendo le coppie di radici (ad es. ).
Radici negative: o
Passaggio 7
Il numero di radici positive possibili è o e il numero di radici negative possibili è o .
Radici positive: o
Radici negative: o